Beschreibung
A novel copper front side metallization architecture for silicon solar cells based on a fine printed silver seed-layer, plated with nickel, copper and silver, is investigated. The work focuses on the printing of fine seed-layers with low silver consumption, the corrosion of the printed seed-layers by the interaction with electrolyte solutions and the encapsulation material on module level and on the long term stability of the cells due to copper migration. The investigation of the correlation between fine contact finger geometry and rheological parameters of the printing pastes enabled the reduction of the total silver consumption to < 15 mg/cell front side.