0

Melt Rheology and its Applications in the Plastics Industry

Engineering Materials and Processes

Erschienen am 01.04.2013, Auflage: 2. Auflage
CHF 229,00
(inkl. MwSt.)

Noch nicht lieferbar

In den Warenkorb
Bibliografische Daten
ISBN/EAN: 9789400763944
Sprache: Englisch
Einband: Gebunden

Beschreibung

InhaltsangabePreface.-  1.Introduction to Rheology: 1.1 What is rheology?.-  1.2 Why rheological properties are important.-  1.3 Stress- a measure of force.-  1.4 Strain - a measure of deformation.-  1.5 Rheological Phenomena.-  1.6 Why polymeric liquids are non-Newtonian and elastic.-  2.Viscosity and the Normal Stress Differences: 2.1  Simple shear and steady simple shear.-  2.2  Viscometric flow.-  2.3 The viscometric functions.-  2.4  The Viscosity.-  2.5  Normal stress differences.-  References.-  3. Linear Viscoelasticity: 3.1 Introduction.-  3.2 Stress relaxation and the relaxation modulus.-  3.3 The Boltzmann superposition principle.-  3.4 Start-up of steady simple shear.-  3.5  Relaxation moduli of rubbers and molten polymers.-  3.6  The Maxwell model for the relaxation modulus.-  3.7  The generalized Maxwell model and the discrete relaxation spectrum.-  3.8  The continuous spectrum.-  .9 Creep and creep recovery: The compliance.-  3.10  Start-up of steady simple extension.-  3.11 Small amplitude oscillatory shear.-  3.12 Inferring a discrete relaxation spectrum from storage and loss moduli.-  3.13  Combining creep and oscillatory shear data.-  3.14 Time-temperature superposition.-  3.15 Cole-Cole and related plots of linear data.-  3.16 Van Gurp-Palmen Plot of Loss Angle Versus Complex Modulus.-  3.17  Storage and loss moduli of molten linear polymers.-  3.18  The plateau modulus and the molecular weight between entanglements.-  3.19  The Rouse-Bueche model for unentangled melts.-  3.20  Tube models for entangled melts.-  3.21  Molecular weights fo the onset of entanglement effects.-  3.22  Summary.-  References.-  4. Nonlinear Viscoelasticity - Phenomena: 4.1 Introduction.-  4.2  Nonlinear phenomena from a tube modelp of view.-  4.3  Nonlinear stress relaxation.-  4.4  Dimensionless groups used to plot rheological data.-  4.5  The viscosity in terms of the tube model.-  4.6  Transient shear tests at finite rates.-  4.7  Extensional flow behavior - Introduction.-  4.8  Extensional Flow Behavior of Melts.-  4.9   Shear modification.-  4.10  Time-temperature superposition of nonlinear properties.-  References.-  5. Nonlinear Viscoelasticity - Models: 5.1 Introduction.-  5.2 Tensor notation.-  5.3 The stress tensor.-  5.4  A strain tensor for infinitesimal deformations.-  5.5  The Boltzmann superposition principle in tensor form.-  5.6 Strain tensors for large, rapid deformations.-  5.7  Integral constitutive equations based on continuum mechanics.-  5.8  Continuum differential constitutive equations.-  5.9  Constitutive equations from molecular models.-  5.10  Numerical simulation of melt flows.-  References.-  6. Measurement Techniques: 6.1. Introduction.-  6.2. Rotational and other drag-flow rheometers.-  6.3. Pressure-driven rheometers.-  6.4  On-line rheometers.-  6.5  High-throughput rheometry.-  6.6. Extensional rheometers.-  6.7  Torque Rheometers.-  6.8  Using Rheology for statistical process control.-  6.9  Sample Stability: Thermo-oxidative degradation and hydrolysis.-  Reference.-  7.  Rheology and molecular structure: 7.1 Rheology and structure of linear polymers.-  7.2 Long-chain branching and melt rheology.-  References.-  8.  Role of Rheology in Plastics Processing: 8.1.Introduction.-  8.2 Flow in simple channels and dies.-  8.3 Flow in an extruder.-  8.4 Sheet extrusion/film casting.-  8.5 Extrusion coating.-  8.6. Film blowing.-  8.7 Blow molding.-  8.8  Injection molding.-  8.9. Rotational molding.-  8.10. Foam Extrusion.-  References.-  Appendix A  Structural and Rheological Parameters for Several Polymers.-  Appendix B  The Displacement Gradient Tensor.-  Subject Index.

Autorenportrait

InhaltsangabePreface.-  1.Introduction to Rheology: 1.1 What is rheology?.-  1.2 Why rheological properties are important.-  1.3 Stress- a measure of force.-  1.4 Strain - a measure of deformation.-  1.5 Rheological Phenomena.-  1.6 Why polymeric liquids are non-Newtonian and elastic.-  2.Viscosity and the Normal Stress Differences: 2.1  Simple shear and steady simple shear.-  2.2  Viscometric flow.-  2.3 The viscometric functions.-  2.4  The Viscosity.-  2.5  Normal stress differences.-  References.-  3. Linear Viscoelasticity: 3.1 Introduction.-  3.2 Stress relaxation and the relaxation modulus.-  3.3 The Boltzmann superposition principle.-  3.4 Start-up of steady simple shear.-  3.5  Relaxation moduli of rubbers and molten polymers.-  3.6  The Maxwell model for the relaxation modulus.-  3.7  The generalized Maxwell model and the discrete relaxation spectrum.-  3.8  The continuous spectrum.-  .9 Creep and creep recovery: The compliance.-  3.10  Start-up of steady simple extension.-  3.11 Small amplitude oscillatory shear.-  3.12 Inferring a discrete relaxation spectrum from storage and loss moduli.-  3.13  Combining creep and oscillatory shear data.-  3.14 Time-temperature superposition.-  3.15 Cole-Cole and related plots of linear data.-  3.16 Van Gurp-Palmen Plot of Loss Angle Versus Complex Modulus.-  3.17  Storage and loss moduli of molten linear polymers.-  3.18  The plateau modulus and the molecular weight between entanglements.-  3.19  The Rouse-Bueche model for unentangled melts.-  3.20  Tube models for entangled melts.-  3.21  Molecular weights fo the onset of entanglement effects.-  3.22  Summary.-  References.-  4. Nonlinear Viscoelasticity - Phenomena: 4.1 Introduction.-  4.2  Nonlinear phenomena from a tube modelp of view.-  4.3  Nonlinear stress relaxation.-  4.4  Dimensionless groups used to plot rheological data.-  4.5  The viscosity in terms of the tube model.-  4.6  Transient shear tests at finite rates.-  4.7  Extensional flow behavior - Introduction.-  4.8  Extensional Flow Behavior of Melts.-  4.9   Shear modification.-  4.10  Time-temperature superposition of nonlinear properties.-  References.-  5. Nonlinear Viscoelasticity - Models: 5.1 Introduction.-  5.2 Tensor notation.-  5.3 The stress tensor.-  5.4  A strain tensor for infinitesimal deformations.-  5.5  The Boltzmann superposition principle in tensor form.-  5.6 Strain tensors for large, rapid deformations.-  5.7  Integral constitutive equations based on continuum mechanics.-  5.8  Continuum differential constitutive equations.-  5.9  Constitutive equations from molecular models.-  5.10  Numerical simulation of melt flows.-  References.-  6. Measurement Techniques: 6.1. Introduction.-  6.2. Rotational and other drag-flow rheometers.-  6.3. Pressure-driven rheometers.-  6.4  On-line rheometers.-  6.5  High-throughput rheometry.-  6.6. Extensional rheometers.-  6.7  Torque Rheometers.-  6.8  Using Rheology for statistical process control.-  6.9  Sample Stability: Thermo-oxidative degradation and hydrolysis.-  Reference.-  7.  Rheology and molecular structure: 7.1 Rheology and structure of linear polymers.-  7.2 Long-chain branching and melt rheology.-  References.-  8.  Role of Rheology in Plastics Processing: 8.1.Introduction.-  8.2 Flow in simple channels and dies.-  8.3 Flow in an extruder.-  8.4 Sheet extrusion/film casting.-  8.5 Extrusion coating.-  8.6. Film blowing.-  8.7 Blow molding.-  8.8  Injection molding.-  8.9. Rotational molding.-  8.10. Foam Extrusion.-  References.-  Appendix A  Structural and Rheological Parameters for Several Polymers.-  Appendix B  The Displacement Gradient Tensor.-  Subject Index.