Beschreibung
Inhaltsangabe1 Pappos's Theorem: Nine Proofs and Three Variations.- 2 Projective Planes.- 3 Homogeneous Coordinates.- 4 Lines and Cross-Ratios.- 5 Calculating with Points on Lines.- 6 Determinants.- 7 More on Bracket Algebra.- 8 Quadrilateral Sets and Liftings.- 9 Conics and Their Duals.- 10 Conics and Perspectivity.- 11 Calculating with Conics.- 12 Projective $d$-space.- 13 Diagram Techniques.- 14 Working with diagrams.- 15 Configurations, Theorems, and Bracket Expressions.- 16 Complex Numbers: A Primer.- 17 The Complex Projective Line.- 18 Euclidean Geometry.- 19 Euclidean Structures from a Projective Perspective.- 20 Cayley-Klein Geometries.- 21 Measurements and Transformations.- 22 Cayley-Klein Geometries at Work.- 23 Circles and Cycles.- 24 Non-Euclidean Geometry: A Historical Interlude.- 25 Hyperbolic Geometry.- 26 Selected Topics in Hyperbolic Geometry.- 27 What We Did Not Touch.- References.- Index.
Autorenportrait
Full Professor for Geometry and Visualization at Technical University Munich. Research in combinatorial, computational and dynamic geometry, automated geometric theorem proving and visualization. Author of the dynamic geometry program Cinderella and of the interactive visualization portal Mathe-Vital. Cinderella was awarded the Multimedia Innovation Award, the European Academic Software Award and the Deutsche Bildungssoftwarepreis. Mathe-Vital won the renowned MedidaPrix in 2008.